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Abstract
Alternative methods for defining canonical SO(3)-coupled bases for SU (3)
irreps are considered and compared. It is shown that a basis that diagonalizes
a particular linear combination of SO(3) invariants in the SU (3) universal
enveloping algebra gives basis states that have good K quantum numbers in the
asymptotic rotor-model limit.

PACS numbers: 02.20. −a, 03.65.Fd

1. Introduction

A common problem in the construction of group or Lie algebra representations is to define a
canonical basis in situations where multiplicities occur. For example, bases which reduce the
subgroup chain

SU(3) ⊃ SO(3) ⊃ SO(2)

(λµ) K L M
(1)

are indexed by the quantum numbers (λµ), L and M of the respective groups SU (3), SO(3)
and SO(2). However, an extra label K is required to distinguish different irreps (irreducible
representations) of SO(3) that occur in a given SU (3) irrep. This paper is concerned with
useful ways to define orthogonal sets of such SO(3) irreps.

In principle, multiple occurrences of subgroup irreps can be defined in any arbitrary way.
However, it is useful to have a well-defined ‘canonical’ definition that can be reproduced by
anyone so that results derived by one person are meaningful to someone else. For example, in
applications of group representations, considerable use is made of Clebsch–Gordan coupling
and Racah recoupling coefficients that are defined for particular resolutions of the multiplicities
that occur. Two kinds of multiplicity arise: one is the multiplicity in the choice of basis for
each irrep. Another, of equal importance, is the multiplicity of different irreps that occur in
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the decomposition of tensor products of irreps. In this paper, we address the resolution of the
first of these two multiplicities.

The resolution of the multiplicity problems for SU (3) is of particular importance in
nuclear physics where SU (3) representations are used to explain the origin of rotational bands
in terms of the nuclear shell model. The interesting fact is that the SO(3) multiplicity is simply
resolved, in the rotor model, by defining the multiplicity label K to be the component of the
angular momentum L relative to a so-called intrinsic axis fixed in the body of the rotor. Thus,
in using SU (3) to describe rotational bands in nuclei, it is desirable to choose basis states
which correspond to the standard rotor-model choice in the limit in which the SU (3) irreps
contract to those of the rotor model. How to make such a choice is not obvious because
intrinsic axes are not defined for an SU (3) irrep. However, we shall show that, in addition
to reducing the SO(3) ⊂ SO(2) groups, the standard basis states of a rotor, labeled by K,L

and M are eigenstates of an SO(3)-invariant operator in the universal enveloping algebra of
the rotor model. Moreover, a parallel SO(3)-invariant operator exists in the SU (3) universal
enveloping algebra. Thus, we derive the sought after resolution of the SU (3) multiplicity that
does correspond, in a contraction limit, to the standard choice of the rotor model.

2. SU (3) irreps and their asymptotic limits

The su(3) Lie algebra is spanned by five components of a quadrupole tensor Q and three
components of an angular momentum L. (Note that we use upper-case letters to denote a
Lie group, e.g., SU (3), and lower-case letters, e.g., su(3), for its Lie algebra.) As discussed
in more detail below, su(3) has an İnönü–Wigner [1] contraction to the Lie algebra, rot(3),
of a rigid-rotor model. The latter Lie algebra is likewise spanned by five components of a
quadrupole tensor Q and three components of an angular momentum L. Both su(3) and rot(3)
have commutation relations

[Lk,Lk′ ] = −
√

2(1k, 1k′|1k + k′)Lk+k′, (2)

[Lk,Qν] = −
√

6(1k, 2ν|2ν + k)Qν+k. (3)

However, they differ in the commutators of their {Qν} operators:

[Qν,Qµ] = 3
√

10(2µ, 2ν|1µ + ν)Lµ+ν ×
{

0 for rot(3),

1 for su(3).
(4)

Thus, whereas su(3) is semi-simple, its contraction, rot(3), is a semi-direct sum of an Abelian
subalgebra, isomorphic to R

5, and an so(3) angular-momentum algebra; we denote this by
writing rot(3) � [R5]so(3). As shown in the following section, the conditions under which
the so(3) → rot(3) contraction apply are for states of finite angular momentum and for
asymptotically large-dimensional su(3) irreps. When these conditions are satisfied, the matrix
elements of the su(3) algebra approach those of the rotor model.

It has been shown in [2] that basis states for a generic (λ, µ), irrep of su(3), are labeled
by angular-momentum quantum numbers, L and M, with L running over the values

L =
{
λ + K, λ + K − 1, . . . , K for K �= 0
λ, λ − 2, . . . , 0 or 1 for K = 0

(5)

with

K = µ,µ − 2, . . . , 0 or 1. (6)

Thus, in the generic case, there is a multiplicity of states with given values of L and M, which
can be indexed by K or any other convenient label.
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There are several ways to construct SU (3) irreps in an SO(3)-coupled basis and derive
the corresponding matrices representing elements of the su(3) Lie algebra. Irreps of the type
(λ, 0) are particularly simple. They have orthonormal SO(3)-coupled bases given, without
multiplicity, by a set of states

{|LM〉;M = −L, . . . , +L,L = λ, λ − 2, . . . , 0 or 1}, (7)

in which L runs over even or odd integer values according as λ is, respectively, even or odd.
Reduced matrix elements for such multiplicity-free irreps have analytical expressions given
[3, 4] (in natural units) by the equations

〈L‖Q‖L〉 =
√

2L + 1(L0, 20|L0)(2λ + 3), (8)

〈L + 2‖Q‖L〉 =
√

2L + 1(L0, 20|L + 2, 0)[4(λ − L)(λ + L + 3)]
1
2 . (9)

A systematic way to derive matrix elements for a generic SU (3) irrep was given [3, 4]
in terms of vector coherent state [5, 6] theory. VCS methods were also used in a derivation
of SU (3) Clebsch–Gordan coefficients in an SO(3)-coupled basis [7, 8]. Conversely, a set
of SU (3) Clebsch–Gordan coefficients computed in an SO(3)-coupled basis enables one to
derive the SO(3)-reduced matrices of the SU (3) quadrupole tensor in that basis. Examples
of reduced matrix elements derived in this way are given below. Such methods do not give
analytical expressions for generic irreps, for which there are multiplicities, However, analytical
expressions are obtained [3, 4] in the asymptotic limits which are approached as either λ or
µ → ∞.

In the following, we restrict consideration to su(3) irreps {(λ, µ)} with λ � µ. This
is because of the well-known fact (as shown, for example, in [4]) that the irreps (λ, µ) and
(µ, λ) are simply related. Specifically, if �(λµ)

ν denotes the matrix representing the quadrupole
operator Qν in the su(3) irrep (λ, µ), then

�(λµ)
ν = −�(µλ)

ν . (10)

With this restriction, asymptotic expressions for the su(3) quadrupole matrix elements
are given for λ → ∞ by

〈KL‖Q‖KL〉 ∼
√

2L + 1(LK, 20|LK)(� + δK,1σLL) (11)

〈KL + 1‖Q‖KL〉 ∼
√

2L + 1(LK, 20|L + 1,K)

×
√

(� − L − 1 + δK,1σL+1,L)(� + L + 1 + δK,1σL+1,L) (12)

〈KL + 2‖Q‖KL〉 ∼
√

2L + 1(LK, 20|L + 2,K)

×
√

(� − 2L − 3 + δK,1σL+2,L)(� + 2L + 3 + δK,1σL+2,L) (13)

〈K + 2, L′‖Q‖KL〉 = (−1)L
′−L〈KL‖Q‖K + 2, L′〉

∼
√

(2L + 1)(1 + δK,0)(LK, 22|L′,K + 2)

√
3
2 (µ − K)(µ + K + 2), (14)

where � = 2λ + µ + 3 and

σL′L = 1

2
(µ + 1)(−1)λ+L ×

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

− 3L(L + 1)

3 − L(L + 1)
for L′ = L

L + 1 for L′ = L + 1
−L for L′ = L − 1
−1 for L′ = L ± 2.

(15)
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Table 1. Comparison of quadrupole reduced matrix elements 〈Kf Lf ‖Q‖KiLi〉 for bases defined
by diagonalizing the operator Q(1) ·Q(2) and by the I, II and III alternatives, as defined in the text,
for the SU (3) irrep (32, 5). Values given by the asymptotic approximations of equations (11)–(15)
are shown in the column headed A.S. Values for rot(3), given by equations (16) and (17), are shown
in the column headed ROT(3).

KiLi Kf Lf Q(1) · Q(2) I II III A.S. ROT(3)

1; 3 1; 1 58.030 319 81.421 678 81.979 149 81.974 076 81.975 606 81.610 661
3; 3 1; 1 59.131 052 15.313 707 11.975 740 12.010 416 12 10.606 602
1; 3 1; 2 −71.091 833 −81.321 756 −80.940 834 −80.945 466 −80.944 425 −79.5
3; 3 1; 2 −40.223 759 7.666 261 10.980 970 10.946 736 10.954 451 9.682 458
1; 3 1; 3 −1.248 765 −61.784 810 −61.476 192 −61.482 530 −61.481 705 −63.531 095
3; 3 1; 3 −86.819 713 0 7.551 035 7.473 012 7.483 315 6.614 378
3; 3 3; 3 62.730 470 123.266 515 122.957 882 122.964 235 122.963 409 122.963 4092
1; 4 1; 2 90.971 036 99.475 476 100.490 358 100.480 593 100.484 540 101.737 583
3; 4 1; 2 44.061 450 17.991 295 10.900 948 10.990 508 10.954 451 9.682 458
1; 4 1; 3 −66.087 883 −52.793 962 −51.839 707 −51.849 622 −51.845 926 −51.693 575
3; 4 1; 3 69.315 355 14.450 569 12.953 794 12.961 550 12.961 481 11.456 439
1; 4 3; 3 −0.916 687 3.009 507 −3.883 9466 −3.792 147 −3.794 733 −3.354 102
3; 4 3; 3 −99.882 581 −127.061 082 −127.590 584 −127.588 524 −127.589 968 −127.787 323
1; 4 1; 4 −97.415 026 −108.055 071 −107.316 055 −107.334 482 −107.331 699 −105.038 286
3; 4 1; 4 −38.133 331 0 10.407 601 10.277 606 10.297 396 9.101 698
3; 4 3; 4 28.612 663 39.252 708 38.513 682 38.532 119 38.529 328 38.529 328
1; 5 1; 3 85.179 826 126.274 052 128.974 225 128.958 781 129.336 770 129.037 785
1; 5 3; 3 −0.269 230 −3.674 329 1.317 411 1.274 925 1.264 911 1.118 034
3; 5 1; 3 60.505 815 26.583 826 10.495 438 10.647 742 10.583 005 9.354 143
3; 5 3; 3 65.665 141 69.189 233 69.022 209 69.009 663 69.229 088 69.558 608
5; 5 3; 3 −76.363 826 16.305 010 14.425 467 14.515 278 14.491 377 16.201 852
1; 5 1; 4 −83.593 639 −69.460 806 −67.269 069 −67.283 818 −67.278 526 −65.453 419
1; 5 3; 4 82.77925 9.338 480 −5.939 770 −5.807 912 −5.796 551 −5.123 475 1
3; 5 1; 4 −16.878 049 13.723 799 14.185 688 14.212 501 14.198 591 12.549 900
3; 5 3; 4 −68.306 769 −135.235 541 −136.270 512 −136.278 511 −136.280 593 −136.610 395
5; 5 3; 4 68.027 894 5.913 498 9.628 153 9.450 810 9.486 833 10.606 602
1; 5 1; 5 −48.716 838 −95.531 881 −93.682 063 −93.716 833 −93.712 654 −96.231 811
3; 5 3; 5 43.126 580 −10.404 218 −12.110 821 −12.089 411 −12.091 955 −12.091 955
5; 5 5; 5 81.164 960 181.510 801 181.367 616 181.380 946 181.379 330 181.379 330
3; 5 1; 5 −52.087 438 0 12.414 743 12.299 948 12.313 845 10.884 004
5; 5 3; 5 113.765 385 0 5.258 647 5.006 770 5.038 315 5.633 007

These asymptotic expressions have been shown analytically to be accurate to order
0
(
(L/�)4

)
. Their predictions are compared with numerically precise matrix elements below,

in tables 1 and 2, and found, even for moderately large values of L/�, to be remarkably
accurate; e.g., � 0.2% error for the states of L < 5 of a (λ, µ) = (32, 5) irrep. They are
similar in form to those of an irrep of the rot(3) rigid-rotor algebra, given by

〈KL′‖Q‖KL〉 =
√

2L + 1
[
(LK, 20|L′K)q̄0 + δK,1(−1)λ+L+1(L,−1, 22|L′1)q̄2

]
, (16)

〈K + 2, L′‖Q‖KL〉 = (−1)L
′−L〈KL‖Q‖K + 2, L′〉

=
√

(2L + 1)(1 + δK,0)(LK, 22|L′,K + 2)q̄2, (17)

with

q̄0 = 2λ + µ + 3, q̄2 =
√

3

2
µ. (18)
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Table 2. Comparisons of quadrupole reduced matrix elements 〈Kf Lf ‖Q‖KiLi〉 as described in
table 1 for the SU (3) irrep (10, 4).

KiLi Kf Lf Q(1) · Q(2) I II III A.S. ROT(3)

0; 2 0; 0 19.146 198 25.227 104 26.854 801 26.823 096 26.832 816 27
2; 2 0; 0 20.625 775 12.473 680 8.415 442 8.515 925 8.485 281 6.928 203
0; 2 0; 2 −25.280 167 −33.827 282 −32.203 990 −32.280 594 −32.271 172 −32.271 172
2; 2 0; 2 −22.476 614 0 10.353 197 10.111 788 10.141 851 8.280 787
2; 3 0; 2 32.612 214 19.722 620 13.305 980 13.464 860 13.416 407 10.954 451
2; 3 2; 2 −30.272 798 −39.887 555 −42.461 171 −42.411 040 −42.426 407 −42.690 748
0; 4 2; 3 20.939 094 10.108 085 −9.182 851 −8.552 679 −8.485 281 −6.928 203
2; 4 2; 3 −32.438 270 −41.477 548 −41.183 272 −41.375 935 −41.366 653 −41.828 220
4; 4 2; 3 −18.966 068 5.276 214 8.367 394 8.079 759 8.197 561 8.197 561
0; 4 0; 2 29.639 536 34.848 900 41.886 357 41.742 972 41.815 923 43.296 321
0; 4 2; 2 0.058 923 −3.976 255 2.594 292 2.343 090 2.267 787 1.851 640
2; 4 0; 2 19.653 177 22.023 088 8.545 059 9.080 523 8.783 101 7.171 372
2; 4 2; 2 21.468 704 28.265 009 26.965 058 26.958 674 26.992 062 27.947 655
4; 4 2; 2 30.379 909 12.821 131 10.867 348 11.055 995 10.954 451 10.954 451
0; 4 0; 4 −45.391 345 −48.446 517 −40.877 618 −41.340 626 −41.281 422 −41.281 423
2; 4 2; 4 11.845 141 −9.673 158 −16.863 115 −16.470 046 −16.512 569 −16.512 569
4; 4 4; 4 33.546 210 62.755 119 57.740 733 57.810 677 57.793 992 57.793 992
2; 4 0; 4 −11.594 159 0 15.396 745 15.025 873 15.073 844 12.307 742
4; 4 2; 4 −33.333 631 0 5.247 793 4.721 849 4.854 239 4.854 239

The latter expressions give accurate approximations to the SU(3) matrix elements when
both λ and µ are large but are generally not as accurate as those given by the asymptotic
approximations of equations (11)–(15).

A computationally simple method [9], used in the present calculations, for deriving
numerically precise matrix elements of an su(3) irrep is to start from two known irreps, (λ1, 0)

and (λ2, 0), and diagonalize the SO(3)-invariant operator Q · Q in the tensor product of these
irreps, where Q := Q(1) +Q(2) is the summed quadrupole tensor for the two irreps. To within a
term proportional to the SO(3) Casimir invariant, L ·L, the operator Q ·Q is proportional to the
SU (3) Casimir invariant. Thus, its eigenstates belong to SU (3) irreps and, in the process of
deriving them, one obtains all the reduced matrix elements of the quadrupole tensor (albeit in
a basis chosen arbitrarily by the computer). However, as shown in [9], if one then diagonalizes
the operator Q(1) · Q(2) within an irreducible (λ, µ) subspace of the (λ1, 0) ⊗ (λ2, 0) tensor
product, then the degeneracies are lifted and the multiplicity of SO(3) irreps is resolved.
Simple techniques for constructing such basis states and deriving their matrix elements were
given in [9] and are used in the present calculations. Examples of reduced quadrupole matrix
elements obtained in this way for the (32, 5) and (10, 4) irreps are shown in the columns of
tables 1 and 2 labeled Q(1) ·Q(2). However, this basis does not appear to correspond to any of
the canonical bases we consider below.

3. Alternatives for resolving the SO(3) multiplicities

We consider three alternatives.

3.1. Alternative I

A standard way to resolve the SU (3) ⊃ SO(3) multiplicity is by the eigenstates of the angular-
momentum-zero-coupled operator
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X3 := (L ⊗ Q ⊗ L)0. (19)

This operator is an SO(3) scalar in the SU (3) universal enveloping algebra [10]. Its potential
use for resolving the SU (3) ⊃ SO(3) multiplicity was noted by Bargmann and Moshinsky
[11]. Such a use is easily implemented because matrix elements of X3 in any SO(3)-coupled
basis for an SU (3) irrep are given to within an unimportant L-dependent constant, cL, by

〈βL′‖X3‖αL〉 = δL′,LcL〈βL‖Q‖αL〉. (20)

Thus, an SO(3)-coupled basis that diagonalizes X3 is given by the eigenstates of the ML

matrices with elements

ML
βα := 〈βL‖Q‖αL〉. (21)

A variant of this method was used in the construction of bases for VCS irreps by K-matrix
methods [12, 13]. Examples of reduced quadrupole matrix elements in such a basis are given
in tables 1 and 2.

3.2. Alternative II

A second alternative is to use generally accepted SU (3) Clebsch–Gordan coefficients in an
SO(3)-coupled basis to derive reduced matrix elements of the SU (3) quadrupole operator by
means of the identity

〈βL′‖Q‖αL〉 = [
4
3 (2L′ + 1)(λ2 + µ2 + λµ + 3λ + 3µ)

] 1
2 ((λµ)αL; (11)2‖(λµ)βL′), (22)

where (λ2 + µ2 + λµ + 3λ + 3µ) is proportional to the value of the SU (3) Casimir operator for
the (λ, µ) irrep and ((λµ)αL; (11)2‖(λµ)βL′) is an SO(3)-reduced SU (3) Clebsch–Gordan
coefficient.

In principle, the resolution of the SU (3) ⊃ SO(3) multiplicity, defined in this way, is only
canonical to the extent that the Clebsch–Gordan coefficients are themselves expressed relative
to a canonical basis. But, even if they are not, provided they are freely available, they serve
the practical purpose of making it possible to compare the results of calculations by different
researchers who use a common set of such coefficients. For present purposes, we use the
Clebsch–Gordan coefficients of [7, 8]. Some results are shown for comparison with the other
alternatives in tables 1 and 2. The comparisons show a remarkable similarity between these
results and those of the following alternative. This will be explained in section 4.

3.3. Alternative III

A third alternative is given by basis states which diagonalize a specified linear combination of
the SO(3) scalar operators X3 and

X4 := (L ⊗ [Q ⊗ Q]2 ⊗ L)0 (23)

within the space of an SU (3) irrep.
The rationale for choosing a particular linear combination is based on the observation

that there is a natural resolution of the SO(3) ⊂ SU (3) multiplicity in the contraction limit
in which an irrep of the su(3) algebra progresses asymptotically toward an irrep of the rotor-
model algebra, denoted by rot(3). In particular, as pointed out in [14], the intrinsic quadrupole
moments of a rot(3) irrep, for which there is a naturally-defined SO(3)-coupled basis, are
related to the SO(3) invariants X̄3 and X̄4, where the latter operators are defined, as for the
corresponding su(3) operators X3 and X4, but in terms of the commuting rot(3) quadrupole
operators. Because of the understood contraction of su(3) → rot(3) for large values of λ,

6
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these observations suggested similar relationships for su(3). Further relationships between
the rigid-rotor model and the SU (3) model were developed by Leschber and Draayer [15].

The contraction of an su(3) irrep to an irrep of the rot(3) algebra is derived as follows
[16]. Let

ε(λµ) := 1
2 [λ2 + µ2 + λµ + 3λ + 3µ]−

1
2 (24)

denote the inverse square root of the eigenvalue of the SU (3) Casimir invariant

C2 := Q · Q + 3L · L (25)

for the irrep (λ, µ), and let Q denote the su(3) quadrupole tensor in inverse units of ε(λµ),
i.e. the tensor with components

Qν := ε(λµ)Qν. (26)

It follows from equation (22) that, for values of L � λ, the non-zero reduced matrix elements
of Q are of the order of magnitude

〈βL′‖Q‖αL〉 �
[

4
3 (2L′ + 1)

] 1
2 . (27)

Moreover, the rhs of the commutation relation

[Qν,Qµ] = 3
√

10(2µ, 2ν|1µ + ν)ε(λµ)2Lµ+ν, (28)

becomes negligible when used with states of angular momentum L for which

ε(λµ)2L � 1. (29)

Thus, within the subspace of states of angular momentum L for which equation (29) is satisfied,
the matrix elements of an su(3) irrep become indistinguishable from those of a rot(3) irrep. In
this situation, su(3) is said to contract to rot(3).

This contraction is of special interest in nuclear physics for explaining the origins of
rotational structure in terms of the nuclear shell model in an SU (3) ⊃ SO(3) coupled basis.
Because there is a natural resolution of the SO(3) ⊂ ROT(3) multiplicity, the su(3) → rot(3)
contraction suggests a parallel resolution of the SO(3) ⊂ SU (3) multiplicity.

It was suggested in [14] that the above-defined basis states of the rot(3) algebra should
diagonalize a combination of the rot(3) operators, X̄3 and X̄4, defined as for their su(3)
counterparts but with commuting quadrupole operators. Thus, we considered the ratios of the
matrix elements

R(L,K) := 〈K + 2, L‖X̄4‖KL〉
〈K + 2, L‖X̄3‖KL〉 = 〈K + 2, L‖[Q ⊗ Q]2‖KL〉

〈K + 2, L‖Q‖KL〉 (30)

for rot(3) irreps. Equations (16) and (17) give the reduced rot(3) matrix elements 〈KL‖Q‖KL〉
and 〈K + 2, L‖Q‖KL〉. From them, we can evaluate

〈K + 2, L‖[Q ⊗ Q
]

2‖KL〉 =
∑
K1L1

U(L2L2;L12)
〈K + 2, L‖Q‖K1L1〉〈K1L1‖Q‖KL〉√

2L1 + 1

(31)

and the ratio R(KL) for any values of L and K. In this way, we determined the remarkable
result that R(LK) takes the L- and K-independent value

R(LK) =
√

8
7 q̄0. (32)

This result means that the basis states of the rigid-rotor rot(3) algebra with good K quantum
numbers are the eigenstates of the SO(3)-invariant

Z̄ := X̄4 −
√

8
7 q̄0X̄3. (33)

7
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Similarly, we can define basis states for an SU (3) irrep to be the eigenstates of the
corresponding SO(3)-invariant

Z := X4 −
√

8
7 (2λ + µ + 3)X3, (34)

with the expectation that, in such a basis, the su(3) quadrupole matrix elements between states
of L � λ will approach those of a rot(3) irrep in the asymptotic limit. Such basis states are
uniquely defined and provide a physically relevant resolution of the SO(3) multiplicity for any
SU (3) irrep. Results obtained for such SU (3) bases are shown in tables 1 and 2.

4. Discussion

Tables 1 and 2 show comparisons of reduced quadrupole matrix elements obtained for the
alternatives given above for defining orthonormal SO(3)-coupled basis states for SU (3) irreps.
The tables also show the corresponding results given by the asymptotic approximation of
equations (11)–(15) and for the rot(3) matrix elements given by equations (16) and (17).
It should be emphasized that the results given for the SU (3) matrix elements listed in the
columns headed I, II and III are all numerically accurate to the precision shown; they only
differ to the extent that they were computed relative to different bases. The asymptotic results
in the column headed A.S. are expected to agree with those of column III for the values of
2λ + µ � Li . Those listed in the column headed ROT(3) are for the rotor algebra and likewise
are expected to approximate those of columns III and A.S. when both λ � Li and µ � Li .

It can be seen that the matrix elements of alternatives II and III differ very little and
both are close to those of the asymptotic approximation, A.S. In fact, the rms differences
between the entries of any of these three columns in table 1 are of the order 0.015. The near
equivalence of the II and III results is remarkable and fortuitous in the sense that it implies that
the bases used in the calculation of SU (3) ⊃ SO(3) Clebsch–Gordan coefficients in [7, 8] are,
in fact, near canonical in the above-defined sense of the basis states being the eigenstates of a
Hermitian operator. This result was unexpected because the choice of basis states for an SU (3)
irrep used in the computation of the SU (3) Clebsch–Gordan coefficients given in [7, 8] did
not make use of the SO(3)-invariant operator, Z. However, the construction of the basis states
that was used did make use of rotor-model methods which, in the asymptotic limit, likewise
give standard rot(3) results. Thus, in retrospect, it is understood that the Clebsch–Gordan
coefficients obtained should be consistent with the SU (3) bases states defined by alternative
III. Note that the results in columns II and III are precise and differ only because they are
calculated relative to slightly different bases. Thus, the fact that they are so close to the
asymptotic results is a direct indicator of the accuracy of the latter for finite-dimensional irreps
(they are, by construction, precise in the asymptotic limit). The results of the A.S. asymptotic
approximation are closest to those of alternative III; they are closer (generally much closer)
than 1% for the matrix elements shown in table 1 and closer (generally much closer) than 3%
for those shown in table 2.

The results of alternative I, obtained by diagonalizing the SO(3) invariant, X3, are
qualitatively similar but much less close to those of the asymptotic rotor-model limit than
those obtained by diagonalizing the linear combination of X3 and X4, given by Z in
equation (34).

The tabulated matrix elements also show the expected result that the accurate matrix
elements for the basis III are reproduced much more accurately, for small values of µ by the
asymptotic SU (3) results of column A.S. than by those of the ROT(3) limit.

In conclusion, we remark that the above results provide a physical and practical resolution
of the so-called inner, i.e., SU (3) ⊃ SO(3), multiplicity problem. However, the outer

8



J. Phys. A: Math. Theor. 41 (2008) 065206 D J Rowe and G Thiamova

multiplicity that occurs in the decomposition of tensor products of SU (3) irreps is also of
importance and, at present, we know of no canonical way to resolve it.
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